

SliceNet Webinar Cognitive, Slice-Level QoE Management

WEBINAR HOST: KENNETH NAGIN, IBM HAIFA RESEARCH LAB DATE: 17 MARCH 2020 TIME: 11:00 CET

slicenet.eu

Introduction

Terminology

- Cognition (Artificial Intelligence, Machine Learning, Big Data)
- Quality of Service (QoS)
- Quality of Experience (QoE)
- Vertical (network slice user)
- Network Service Provider (NSP)
- Digital Service Provider (DSP)
- Plug & Play (P&P) Plugin

Goals 🗆

- Cognitive Driven Problem Determination (Predict problem before QoE degrades)
- Cognitive Driven Remedial Actuation (Automate network optimization)
- Vertical in the loop

Webinar Agenda

Agenda

- Purpose/Objectives (Why is Cognition required for Slice QoE Management?)
- Requirements and challenges (Why is it hard?)
- Technical approaches for design and prototyping (What are the basic building blocks?)
- Technical achievements (What did we actually do?)
- Industry Vertical applications/contributions (How does it apply to the real world?)
- Summary of innovations (rap-up and time for more questions)

Purpose/objectives

Why use cognition for slice QoE management?

- Many workloads, dynamic traffic patterns
- Must constantly adapt, anticipate
- Multiple data sources, multiple owners, multiple semantics, multi-layering, multidomain
 - Must combine sources, interpret, predict outcomes
- □ E2E Quality of Experience (QoE) per slice
 - Must derive QoE from Quality of Service (QoS)
- Explosion of possible per slice states and possible configuration
 Must scale

Traditional problem determination, e.g. thresholding, not adequate.

Cognition Required

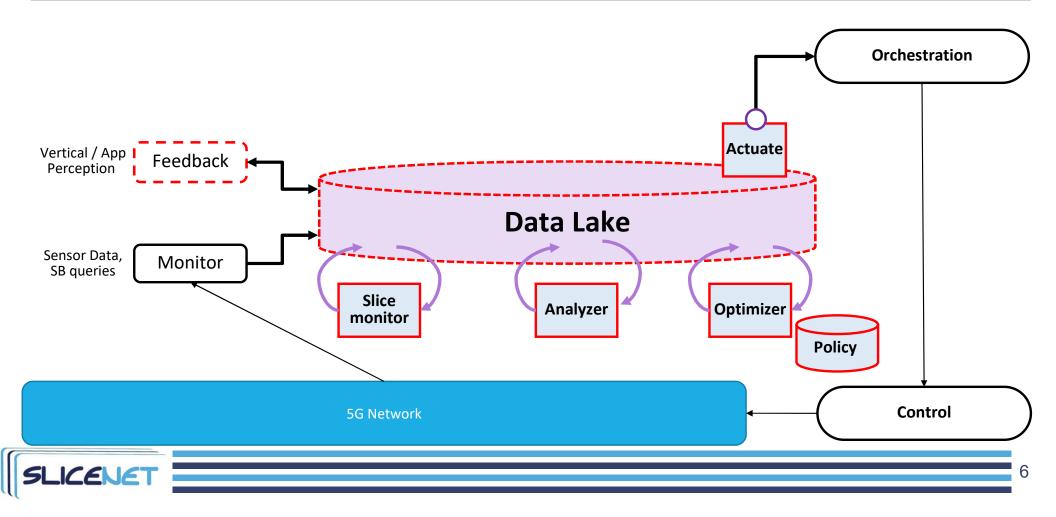
requirements and challenges

Challenges

Combine Cognition with "traditional" network operations management
 Event-action, policies

- Many machine learning methods
- Allow easy integration of new analytics
- Big Data management
- Many sources and Many components using data

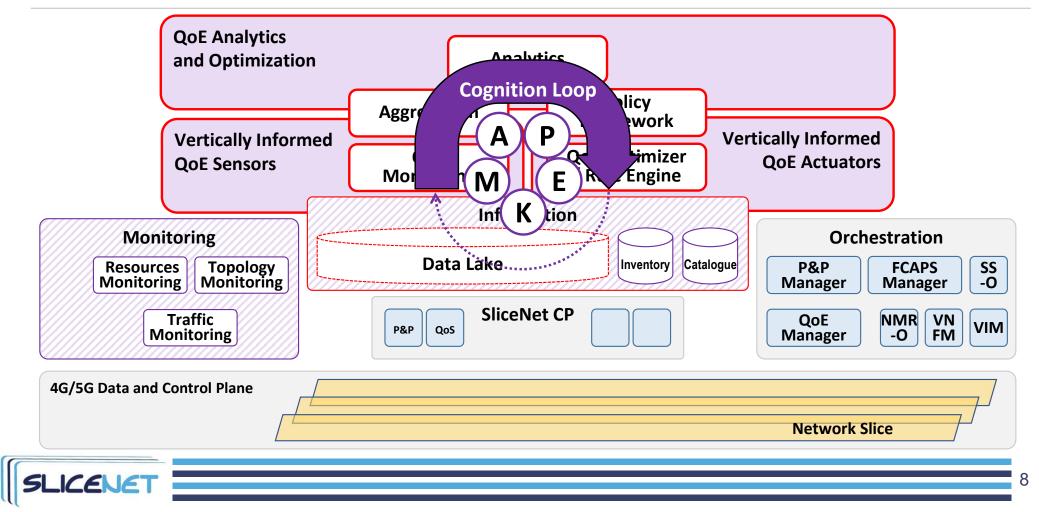
Harmonize under single architecture


Allow mix-and-match of different tools, orchestrate cognition across layers and domains
 One paradigm for both NSP and DSP

- Quality of Service (QoS) vs Quality of Experience (QoE)
 - Network level QoS KPIs do not reflect E2E QoE
 - Must estimate and predict actual QoE

Cognitive driven

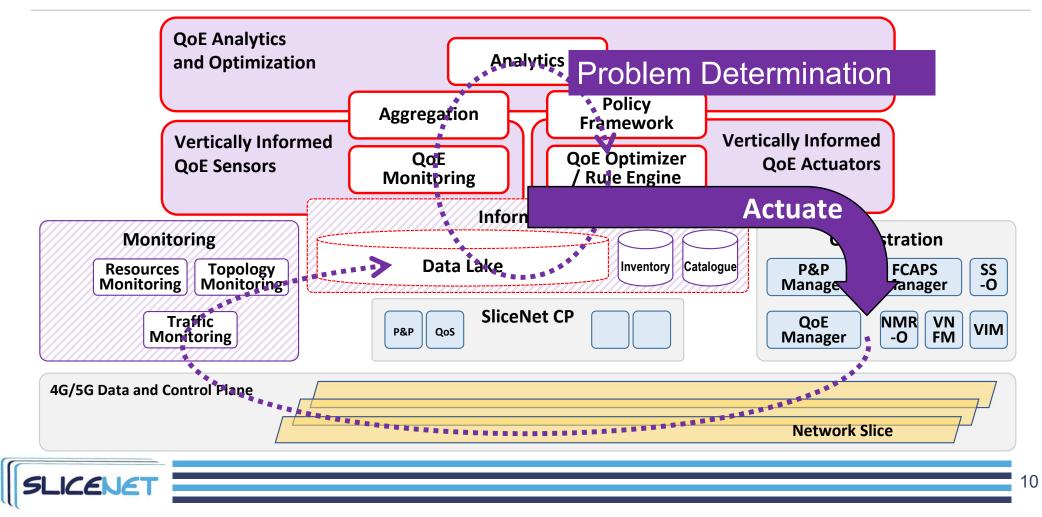
problem determination, prediction and remedial actuation



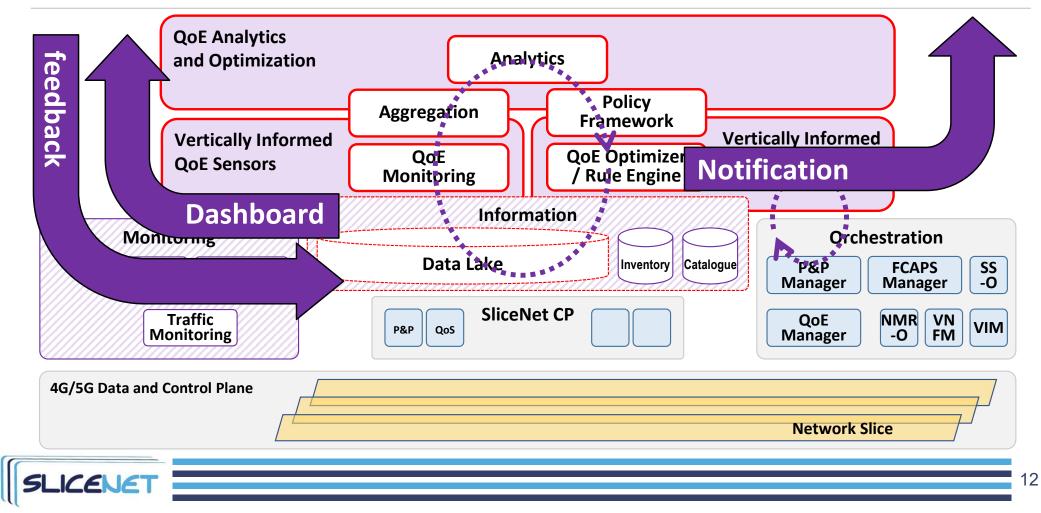
Technical approach for design and prototyping


SliceNet Architecture

			P&P Plugin		OSA				SliceNe Service Acces Sub-Plan
Aggro	egator Rul	e Engine	Analyzer	QoE Optimize	r Policy Framework	SliceNet Cognition Sub-Plane	P&P Manager	Service & Slice Orch. (SS-O))
		Data Lake			Inventory	Catalogue	QoE Manager	Resource Orch. (NMR-O))
	Aggregate Data Resource Data	Analytic Output	External Inp Topology D	 : ⁻	Inform	SliceNet nation Sub-Plane	FCAPS Manager		SliceNe Orchestratio
Monit Sub-Pl Resour Monit	rce Traffic	Topology Monitor	Control Plane RAN Ada RAN Cont	pter MEC-C	Control QoS Contro	aul Adapter DPP Adapte	er WAN Adapter	VNF Manager (VNFM)	Virtual Infra. Manager (VIM)
				4	G/5G Network (D	ata and Control) Plane	2		
	ENET								


MAPE-K cognitive management loop

Learn/train: generate knowledge (as policy)


Cognitive Driven Remedial Actuation

FCAPs management: short loop

Vertical In the Loop (Plug & Play Plugin)

Technical achievements & Vertical UC

Three Use Cases

Use Case	ML Model	Model Type	Remedial Actuation	Quality of Experience (QoE)
Smart Grid	Predict RAN degradation and RAN failures from alarm data	Neural Network	 Modify slice network parameters (bandwidth), Failover to new RAN 	Power grid under constant observation and control.
Smart City	Detect performance degradation due to Noisy Neighbours	Random Forest	 Bandwidth VNF scaling (VM Scaling), VNF migration (VM Migration) 	All signals from light sensors received as usual. No lose of control of lights.
eHealth	 Anomaly Detection: Data from ambulance mobile plug-in Observe network behavior for the last 5 minutes in order to forecast the signal strength degradation within the future 5 minutes. 	Random Forest	 Traffic Re-direction within same NSP Hand-Over to another NSP 	No degradation in video stream noticed by health workers.

Prototyping

Delivered SW components prototypes and interfaces available at SliceNet Git:

- ✓ QoE REST Client: <u>https://gitlab.com/slicenet/qoe-rest-client</u>
- ✓ QoE Plugin: <u>https://gitlab.com/slicenet/qoe-plugin</u>
- ✓ QoE Optimizer: <u>https://gitlab.com/slicenet/qoe-optimizer</u>
- Policy Manager: <u>https://github.com/onap/policy-engine</u>, Docker: nexus3.onap.org:10001/onap/policy-pe
- ✓ RAN NS Prediction Model: <u>https://gitlab.slicenet.oteresearch.gr/jose-nuno-sousa/cog-demo</u>

Summary of innovations

Innovations

- Cognitive-driven state analysis and problem determination
 - Multiple ML Model Support
 - One paradigm for both NSP and DSP
- Cognitive-driven remedial actuation
 - Cognitive-driven triggers
 - Cognitive-driven policy framework
 - Actuators de-coupled from triggers (reusable)
- Cognitive-Driven & Traditional Network Management Integration
- □ Slice aware, vertical in the loop
 - Plug & Play Plugins
 - Vertically-informed Quality of Experience (QoE) sensors
- Data Lake
 - Data Sharing
 - Between monitors and Cognitive Sub-Plain
 - Between NSP and DSP
 - Component Decoupling

Further Information

Website: https://slicenet.eu/

Email: contact@slicenet.eu

Further information: https://slicenet.eu/publications/

SliceNet Open source contributions: <u>https://slicenet.eu/software-contributions/</u>

16

